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Abstract: Cellular activity and responses to stimuli are governed through an elaborated communication process 
called cell signalling. The modelling of signalling mechanisms has the potential to help us understand the regulatory 
processes determining cellular behaviour. One approach to derive models of signalling networks is from data alone. 
Another one is to use prior knowledge networks (PKN’s) derived from literature or experts’ knowledge to build 
models that are trained to data. Both approaches have limitations. Data-driven methods can infer many false-positive 
interactions. Literature-constrained methods, on the other hand, are limited to model only known interactions. To 
overcome these limitations, within a logic ordinary differential equations (ODE) formalism, we have developed 
Dynamic-Feeder. The framework identifies and incorporates new possible links to the network and then it evaluates 
their effects based on how the models predict the data. Dynamic-Feeder combines data-driven inference methods 
with general literature-based knowledge of proteins interaction networks (PIN’s). We illustrate our method with a 
published case study using phosphoproteomic data upon perturbation of breast cancer cell lines. 
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1. INTRODUCTION 

Cells rely on a system of signal processing and transmission 
networks to perform and coordinate their basal activities. 
The transmission process is governed through chemical 
signals which can be mediated by proteins or other smaller 
molecules. At the protein level, the signal propagation 
relies on post-translational modifications and protein-
protein interactions. Considering the variety of proteins and 
their modifications, signalling networks are generally large, 
complex and dynamic systems. 

One way to deal with this level of complexity is to build 
computational models that represent a simplification of the 
signalling system. The model parameters are finely tuned to 
best describe the observed relationship between the inputs 
and the outputs(Janes & Lauffenburger 2013). By inputs, 
we refer to the perturbations we add to the system (i.e. 
extracellular ligand and inhibitors of specific intracellular 
proteins) that produces an observed response within the 
cells (i.e. measured activity or abundance of proteins or 
other molecules). These models can then be used to predict 
other perturbation effects with relevant therapeutic 
implications. 

Many computational tools have been developed to model 
cell signalling networks. Logic-based models, in particular, 
are a suitable variant due to their efficiency and simplicity 
for describing biochemical networks without the need to 
include details about the biochemistry of each interaction. 
These methods can provide a qualitative (Chaouiya et al. 

2012; Müssel et al. 2010; Batt et al. 2012; Dorier et al. 
2016) or quantitative (Stoll et al. 2012; De Landtsheer et al. 
2017; Di Cara et al. 2007; Trairatphisan et al. 2014) 
description of the system by modelling a list of interactions 
as encoded in a prior knowledge network (PKN). A PKN is 
typically derived from literature, often summarized in 
dedicated databases. On this line, we have developed 
CellNOpt (Terfve et al. 2012) which is a method used for 
building and training predictive logic models of signalling 
networks to data. 
 
Modellers often rely on their own knowledge or on pathway 
resources to decide which interactions to be included in the 
PKN. However, the main problem with methods that use 
PKNs is that the knowledge we have about the interactions 
in the system might be incomplete or even wrong. 
Furthermore, exploring the literature and large databases 
containing thousands of interactions and manually 
identifying a few relevant mechanisms is impractical. To 
address these issues, Eduati et al. (Eduati et al. 2012) 
developed a method called CNORFeeder that is 
implemented in the CellNOpt pipeline (Eduati et al. 2012). 
CNORFeeder identifies interactions from the data and 
merges them into the PKN to link the model inputs to 
perturbed nodes in the network. However, this approach is 
limited in its applications to only the simple logic Boolean 
formalism and to two time-point (before and after 
perturbation) datasets. Furthermore, it does not take into 
consideration how well the original PKN based Boolean 
model fits the data. In this paper, we present an extension of 

     

Literature and data-driven based inference of signalling interactions using time-
course data 

  
Enio Gjerga*, **, Panuwat Trairatphisan**, Attila Gabor*, **, Julio Saez-Rodriguez *, ** 

  
*RWTH Aachen University, Faculty of Medicine, Joint Research Centre for Computational Biomedicine (JRC-

COMBINE), Aachen, Germany 
**Heidelberg University, Faculty of Medicine, and Heidelberg University Hospital, Institute for Computational 

Biomedicine, Bioquant, Heidelberg, Germany 
Corresponding author: Julio Saez-Rodriguez (julio.saez@bioquant.uni-heidelberg.de) 

 
 

Abstract: Cellular activity and responses to stimuli are governed through an elaborated communication process 
called cell signalling. The modelling of signalling mechanisms has the potential to help us understand the regulatory 
processes determining cellular behaviour. One approach to derive models of signalling networks is from data alone. 
Another one is to use prior knowledge networks (PKN’s) derived from literature or experts’ knowledge to build 
models that are trained to data. Both approaches have limitations. Data-driven methods can infer many false-positive 
interactions. Literature-constrained methods, on the other hand, are limited to model only known interactions. To 
overcome these limitations, within a logic ordinary differential equations (ODE) formalism, we have developed 
Dynamic-Feeder. The framework identifies and incorporates new possible links to the network and then it evaluates 
their effects based on how the models predict the data. Dynamic-Feeder combines data-driven inference methods 
with general literature-based knowledge of proteins interaction networks (PIN’s). We illustrate our method with a 
published case study using phosphoproteomic data upon perturbation of breast cancer cell lines. 

Keywords: Signaling Networks, Dynamic Models, Pathway Resources, Protein Interactions. 

 

1. INTRODUCTION 

Cells rely on a system of signal processing and transmission 
networks to perform and coordinate their basal activities. 
The transmission process is governed through chemical 
signals which can be mediated by proteins or other smaller 
molecules. At the protein level, the signal propagation 
relies on post-translational modifications and protein-
protein interactions. Considering the variety of proteins and 
their modifications, signalling networks are generally large, 
complex and dynamic systems. 

One way to deal with this level of complexity is to build 
computational models that represent a simplification of the 
signalling system. The model parameters are finely tuned to 
best describe the observed relationship between the inputs 
and the outputs(Janes & Lauffenburger 2013). By inputs, 
we refer to the perturbations we add to the system (i.e. 
extracellular ligand and inhibitors of specific intracellular 
proteins) that produces an observed response within the 
cells (i.e. measured activity or abundance of proteins or 
other molecules). These models can then be used to predict 
other perturbation effects with relevant therapeutic 
implications. 

Many computational tools have been developed to model 
cell signalling networks. Logic-based models, in particular, 
are a suitable variant due to their efficiency and simplicity 
for describing biochemical networks without the need to 
include details about the biochemistry of each interaction. 
These methods can provide a qualitative (Chaouiya et al. 

2012; Müssel et al. 2010; Batt et al. 2012; Dorier et al. 
2016) or quantitative (Stoll et al. 2012; De Landtsheer et al. 
2017; Di Cara et al. 2007; Trairatphisan et al. 2014) 
description of the system by modelling a list of interactions 
as encoded in a prior knowledge network (PKN). A PKN is 
typically derived from literature, often summarized in 
dedicated databases. On this line, we have developed 
CellNOpt (Terfve et al. 2012) which is a method used for 
building and training predictive logic models of signalling 
networks to data. 
 
Modellers often rely on their own knowledge or on pathway 
resources to decide which interactions to be included in the 
PKN. However, the main problem with methods that use 
PKNs is that the knowledge we have about the interactions 
in the system might be incomplete or even wrong. 
Furthermore, exploring the literature and large databases 
containing thousands of interactions and manually 
identifying a few relevant mechanisms is impractical. To 
address these issues, Eduati et al. (Eduati et al. 2012) 
developed a method called CNORFeeder that is 
implemented in the CellNOpt pipeline (Eduati et al. 2012). 
CNORFeeder identifies interactions from the data and 
merges them into the PKN to link the model inputs to 
perturbed nodes in the network. However, this approach is 
limited in its applications to only the simple logic Boolean 
formalism and to two time-point (before and after 
perturbation) datasets. Furthermore, it does not take into 
consideration how well the original PKN based Boolean 
model fits the data. In this paper, we present an extension of 

     

Literature and data-driven based inference of signalling interactions using time-
course data 

  
Enio Gjerga*, **, Panuwat Trairatphisan**, Attila Gabor*, **, Julio Saez-Rodriguez *, ** 

  
*RWTH Aachen University, Faculty of Medicine, Joint Research Centre for Computational Biomedicine (JRC-

COMBINE), Aachen, Germany 
**Heidelberg University, Faculty of Medicine, and Heidelberg University Hospital, Institute for Computational 

Biomedicine, Bioquant, Heidelberg, Germany 
Corresponding author: Julio Saez-Rodriguez (julio.saez@bioquant.uni-heidelberg.de) 

 
 

Abstract: Cellular activity and responses to stimuli are governed through an elaborated communication process 
called cell signalling. The modelling of signalling mechanisms has the potential to help us understand the regulatory 
processes determining cellular behaviour. One approach to derive models of signalling networks is from data alone. 
Another one is to use prior knowledge networks (PKN’s) derived from literature or experts’ knowledge to build 
models that are trained to data. Both approaches have limitations. Data-driven methods can infer many false-positive 
interactions. Literature-constrained methods, on the other hand, are limited to model only known interactions. To 
overcome these limitations, within a logic ordinary differential equations (ODE) formalism, we have developed 
Dynamic-Feeder. The framework identifies and incorporates new possible links to the network and then it evaluates 
their effects based on how the models predict the data. Dynamic-Feeder combines data-driven inference methods 
with general literature-based knowledge of proteins interaction networks (PIN’s). We illustrate our method with a 
published case study using phosphoproteomic data upon perturbation of breast cancer cell lines. 

Keywords: Signaling Networks, Dynamic Models, Pathway Resources, Protein Interactions. 

 

1. INTRODUCTION 

Cells rely on a system of signal processing and transmission 
networks to perform and coordinate their basal activities. 
The transmission process is governed through chemical 
signals which can be mediated by proteins or other smaller 
molecules. At the protein level, the signal propagation 
relies on post-translational modifications and protein-
protein interactions. Considering the variety of proteins and 
their modifications, signalling networks are generally large, 
complex and dynamic systems. 

One way to deal with this level of complexity is to build 
computational models that represent a simplification of the 
signalling system. The model parameters are finely tuned to 
best describe the observed relationship between the inputs 
and the outputs(Janes & Lauffenburger 2013). By inputs, 
we refer to the perturbations we add to the system (i.e. 
extracellular ligand and inhibitors of specific intracellular 
proteins) that produces an observed response within the 
cells (i.e. measured activity or abundance of proteins or 
other molecules). These models can then be used to predict 
other perturbation effects with relevant therapeutic 
implications. 

Many computational tools have been developed to model 
cell signalling networks. Logic-based models, in particular, 
are a suitable variant due to their efficiency and simplicity 
for describing biochemical networks without the need to 
include details about the biochemistry of each interaction. 
These methods can provide a qualitative (Chaouiya et al. 

2012; Müssel et al. 2010; Batt et al. 2012; Dorier et al. 
2016) or quantitative (Stoll et al. 2012; De Landtsheer et al. 
2017; Di Cara et al. 2007; Trairatphisan et al. 2014) 
description of the system by modelling a list of interactions 
as encoded in a prior knowledge network (PKN). A PKN is 
typically derived from literature, often summarized in 
dedicated databases. On this line, we have developed 
CellNOpt (Terfve et al. 2012) which is a method used for 
building and training predictive logic models of signalling 
networks to data. 
 
Modellers often rely on their own knowledge or on pathway 
resources to decide which interactions to be included in the 
PKN. However, the main problem with methods that use 
PKNs is that the knowledge we have about the interactions 
in the system might be incomplete or even wrong. 
Furthermore, exploring the literature and large databases 
containing thousands of interactions and manually 
identifying a few relevant mechanisms is impractical. To 
address these issues, Eduati et al. (Eduati et al. 2012) 
developed a method called CNORFeeder that is 
implemented in the CellNOpt pipeline (Eduati et al. 2012). 
CNORFeeder identifies interactions from the data and 
merges them into the PKN to link the model inputs to 
perturbed nodes in the network. However, this approach is 
limited in its applications to only the simple logic Boolean 
formalism and to two time-point (before and after 
perturbation) datasets. Furthermore, it does not take into 
consideration how well the original PKN based Boolean 
model fits the data. In this paper, we present an extension of 

     

Literature and data-driven based inference of signalling interactions using time-
course data 

  
Enio Gjerga*, **, Panuwat Trairatphisan**, Attila Gabor*, **, Julio Saez-Rodriguez *, ** 

  
*RWTH Aachen University, Faculty of Medicine, Joint Research Centre for Computational Biomedicine (JRC-

COMBINE), Aachen, Germany 
**Heidelberg University, Faculty of Medicine, and Heidelberg University Hospital, Institute for Computational 

Biomedicine, Bioquant, Heidelberg, Germany 
Corresponding author: Julio Saez-Rodriguez (julio.saez@bioquant.uni-heidelberg.de) 

 
 

Abstract: Cellular activity and responses to stimuli are governed through an elaborated communication process 
called cell signalling. The modelling of signalling mechanisms has the potential to help us understand the regulatory 
processes determining cellular behaviour. One approach to derive models of signalling networks is from data alone. 
Another one is to use prior knowledge networks (PKN’s) derived from literature or experts’ knowledge to build 
models that are trained to data. Both approaches have limitations. Data-driven methods can infer many false-positive 
interactions. Literature-constrained methods, on the other hand, are limited to model only known interactions. To 
overcome these limitations, within a logic ordinary differential equations (ODE) formalism, we have developed 
Dynamic-Feeder. The framework identifies and incorporates new possible links to the network and then it evaluates 
their effects based on how the models predict the data. Dynamic-Feeder combines data-driven inference methods 
with general literature-based knowledge of proteins interaction networks (PIN’s). We illustrate our method with a 
published case study using phosphoproteomic data upon perturbation of breast cancer cell lines. 

Keywords: Signaling Networks, Dynamic Models, Pathway Resources, Protein Interactions. 

 

1. INTRODUCTION 

Cells rely on a system of signal processing and transmission 
networks to perform and coordinate their basal activities. 
The transmission process is governed through chemical 
signals which can be mediated by proteins or other smaller 
molecules. At the protein level, the signal propagation 
relies on post-translational modifications and protein-
protein interactions. Considering the variety of proteins and 
their modifications, signalling networks are generally large, 
complex and dynamic systems. 

One way to deal with this level of complexity is to build 
computational models that represent a simplification of the 
signalling system. The model parameters are finely tuned to 
best describe the observed relationship between the inputs 
and the outputs(Janes & Lauffenburger 2013). By inputs, 
we refer to the perturbations we add to the system (i.e. 
extracellular ligand and inhibitors of specific intracellular 
proteins) that produces an observed response within the 
cells (i.e. measured activity or abundance of proteins or 
other molecules). These models can then be used to predict 
other perturbation effects with relevant therapeutic 
implications. 

Many computational tools have been developed to model 
cell signalling networks. Logic-based models, in particular, 
are a suitable variant due to their efficiency and simplicity 
for describing biochemical networks without the need to 
include details about the biochemistry of each interaction. 
These methods can provide a qualitative (Chaouiya et al. 

2012; Müssel et al. 2010; Batt et al. 2012; Dorier et al. 
2016) or quantitative (Stoll et al. 2012; De Landtsheer et al. 
2017; Di Cara et al. 2007; Trairatphisan et al. 2014) 
description of the system by modelling a list of interactions 
as encoded in a prior knowledge network (PKN). A PKN is 
typically derived from literature, often summarized in 
dedicated databases. On this line, we have developed 
CellNOpt (Terfve et al. 2012) which is a method used for 
building and training predictive logic models of signalling 
networks to data. 
 
Modellers often rely on their own knowledge or on pathway 
resources to decide which interactions to be included in the 
PKN. However, the main problem with methods that use 
PKNs is that the knowledge we have about the interactions 
in the system might be incomplete or even wrong. 
Furthermore, exploring the literature and large databases 
containing thousands of interactions and manually 
identifying a few relevant mechanisms is impractical. To 
address these issues, Eduati et al. (Eduati et al. 2012) 
developed a method called CNORFeeder that is 
implemented in the CellNOpt pipeline (Eduati et al. 2012). 
CNORFeeder identifies interactions from the data and 
merges them into the PKN to link the model inputs to 
perturbed nodes in the network. However, this approach is 
limited in its applications to only the simple logic Boolean 
formalism and to two time-point (before and after 
perturbation) datasets. Furthermore, it does not take into 
consideration how well the original PKN based Boolean 
model fits the data. In this paper, we present an extension of 

     

Literature and data-driven based inference of signalling interactions using time-
course data 

  
Enio Gjerga*, **, Panuwat Trairatphisan**, Attila Gabor*, **, Julio Saez-Rodriguez *, ** 

  
*RWTH Aachen University, Faculty of Medicine, Joint Research Centre for Computational Biomedicine (JRC-

COMBINE), Aachen, Germany 
**Heidelberg University, Faculty of Medicine, and Heidelberg University Hospital, Institute for Computational 

Biomedicine, Bioquant, Heidelberg, Germany 
Corresponding author: Julio Saez-Rodriguez (julio.saez@bioquant.uni-heidelberg.de) 

 
 

Abstract: Cellular activity and responses to stimuli are governed through an elaborated communication process 
called cell signalling. The modelling of signalling mechanisms has the potential to help us understand the regulatory 
processes determining cellular behaviour. One approach to derive models of signalling networks is from data alone. 
Another one is to use prior knowledge networks (PKN’s) derived from literature or experts’ knowledge to build 
models that are trained to data. Both approaches have limitations. Data-driven methods can infer many false-positive 
interactions. Literature-constrained methods, on the other hand, are limited to model only known interactions. To 
overcome these limitations, within a logic ordinary differential equations (ODE) formalism, we have developed 
Dynamic-Feeder. The framework identifies and incorporates new possible links to the network and then it evaluates 
their effects based on how the models predict the data. Dynamic-Feeder combines data-driven inference methods 
with general literature-based knowledge of proteins interaction networks (PIN’s). We illustrate our method with a 
published case study using phosphoproteomic data upon perturbation of breast cancer cell lines. 

Keywords: Signaling Networks, Dynamic Models, Pathway Resources, Protein Interactions. 

 

1. INTRODUCTION 

Cells rely on a system of signal processing and transmission 
networks to perform and coordinate their basal activities. 
The transmission process is governed through chemical 
signals which can be mediated by proteins or other smaller 
molecules. At the protein level, the signal propagation 
relies on post-translational modifications and protein-
protein interactions. Considering the variety of proteins and 
their modifications, signalling networks are generally large, 
complex and dynamic systems. 

One way to deal with this level of complexity is to build 
computational models that represent a simplification of the 
signalling system. The model parameters are finely tuned to 
best describe the observed relationship between the inputs 
and the outputs(Janes & Lauffenburger 2013). By inputs, 
we refer to the perturbations we add to the system (i.e. 
extracellular ligand and inhibitors of specific intracellular 
proteins) that produces an observed response within the 
cells (i.e. measured activity or abundance of proteins or 
other molecules). These models can then be used to predict 
other perturbation effects with relevant therapeutic 
implications. 

Many computational tools have been developed to model 
cell signalling networks. Logic-based models, in particular, 
are a suitable variant due to their efficiency and simplicity 
for describing biochemical networks without the need to 
include details about the biochemistry of each interaction. 
These methods can provide a qualitative (Chaouiya et al. 

2012; Müssel et al. 2010; Batt et al. 2012; Dorier et al. 
2016) or quantitative (Stoll et al. 2012; De Landtsheer et al. 
2017; Di Cara et al. 2007; Trairatphisan et al. 2014) 
description of the system by modelling a list of interactions 
as encoded in a prior knowledge network (PKN). A PKN is 
typically derived from literature, often summarized in 
dedicated databases. On this line, we have developed 
CellNOpt (Terfve et al. 2012) which is a method used for 
building and training predictive logic models of signalling 
networks to data. 
 
Modellers often rely on their own knowledge or on pathway 
resources to decide which interactions to be included in the 
PKN. However, the main problem with methods that use 
PKNs is that the knowledge we have about the interactions 
in the system might be incomplete or even wrong. 
Furthermore, exploring the literature and large databases 
containing thousands of interactions and manually 
identifying a few relevant mechanisms is impractical. To 
address these issues, Eduati et al. (Eduati et al. 2012) 
developed a method called CNORFeeder that is 
implemented in the CellNOpt pipeline (Eduati et al. 2012). 
CNORFeeder identifies interactions from the data and 
merges them into the PKN to link the model inputs to 
perturbed nodes in the network. However, this approach is 
limited in its applications to only the simple logic Boolean 
formalism and to two time-point (before and after 
perturbation) datasets. Furthermore, it does not take into 
consideration how well the original PKN based Boolean 
model fits the data. In this paper, we present an extension of 

© 2019, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved.



	 Enio Gjerga  et al. / IFAC PapersOnLine 52-26 (2019) 52–57	 53 
 

     

 

this method developed within the CellNOpt framework, 
called Dynamic-Feeder. The method overcomes the 
limitations of CNORFeeder by inferring new possible 
functional interactions missing in the PKN for dynamic 
models casted as logic-based Ordinary Differential 
Equations (ODEs) from time-series data. We show a step-
by-step summary of the Dynamic-Feeder pipeline and apply 
it to a study from the HPN-DREAM Breast Cancer 
challenge (Hill et al. 2016) where time-resolved phospho-
proteomic data from breast cancer cell lines were used to 
identify causal influences in signalling networks. 

 

2. METHODS 

2.1  CellNOpt 

CellNOpt is a free R package, which trains a PKN to data, 
in order to identify functional proteins and interactions in a 
specific context. The data used to refine the networks 
comes from low-to-medium throughput targeted proteomic 
experiment that offers superior levels of quantitative 
accuracy and reproducibility (Bensimon et al. 2012) 
compared to large-scale label-free or un-targeted data 
acquisition techniques. Furthermore, depending on the 
quality and temporal resolution of the data, CellNOpt 
features different logic formalisms describing the system 
with increasing levels of details: from Boolean models for 
perturbation data to logic-based ordinary differential 
equation (ODE’s) models (MacNamara et al. 2012). In this 
paper, we will focus on the logic ODE’s since the 
Dynamic-Feeder pipeline has been designed specifically for 
this kind of formalism. 

The logic-ODE formalism has been implemented in 
CNORode, an add-on package of CellNOpt. CNORode can 
handle time-course data in a continuous manner. It derives 
and trains a system of logic ordinary differential equations 
(ODEs) to account for continuous values of state and time. 
The set of ODE’s for each species i in the PKN are defined 
as in (1). 
 
dxi / dt = τ i (Bi (s(x1,i ), s(x2,i ),..., s(xN ,i ))− xi )  s∈[0,1]  (1)  

 
Where xi represents the activity state of node i ∈{1,2,...,ns} 
(where ns is the number of species in the network); while Bi 
represents the continuous activation function of node i 
based on the activity levels of it’s N regulators and their 
logic combination as encoded in the PKN (Wittmann et al. 
2009). τ i  is the life-time of the species i and we can we 
refer to it as the responsiveness of the species i. Higher 
values of τ i  on this case means that the protein is more 
responsive to it’s upstream activators. The regulation level 
of a node i from one of it’s regulators j is defined by a 
sigmoidal transfer function s(xj,i) as described in (2). 
 

s(x j ,i ) = 1−
(1− x j ,i )

nj ,i / [(1− x j ,i )
nj ,i + kj ,i

n j ,i ]
1 / (1+ kj ,i

n j ,i )   (2)  

Besides τ , the other continuous Hill parameters n and k 
(representing respectively the degree of cooperativity 
between interactors sharing an edge in the PKN and the 
strength of interaction) are also optimized for each edge 
since they represent pathway dynamic. CNORode relies on 
CVODES library for the simulations, while the continuous 
parameters are optimized by using MEIGO (Egea et al. 
2014) optimization toolbox. 

Fitting of model to data is formalized as an optimization 
problem. Specifically, we aim to identify the set of model 
parameters that minimizes the mean square error (MSE) 
between our model predictions and the scaled data for all 
measured nodes (Saez-Rodriguez et al. 2009). Each fitted 
parameter represents specific dynamic properties of the 
nodes and the edges of the PKN (i.e. strength of 
interactions, response, etc.).  The goal is to minimize the 
sum of model predictions x ∈[0,1] and measured scaled 
values m∈[0,1] . To account for model sparsity, an L1 
penalty term can be introduced to the objective function on 
the parameters. The balance between goodness of fit and 
model sparsity can be adjusted by a parameter λ  (Eduati et 
al. 2017): 
 

min( 1
N

(mi,z − xi,z )
2 + λττ i + λkkl + λnnl

l=1

nr

∑
l=1

nr

∑
i=1

ns

∑
z=1

ne

∑
i=1

ns

∑ )
 (3)  

 
Where i and l are the index sets of species (ns being the 
total number of nodes in the PKN) and reactions (nr being 
the total number of interactions in the PKN). The index 
z∈{1,2,...,ne}  refers to a specific experimental condition in 
which a set of nodes is being stimulated or inhibited. We 
can assign a specific penalty parameter value λ  for each 
edge or node in the PKN and control which network 
components can be more prioritized compared to others 
(i.e. based on the number of literature mentions). To reduce 
the computational complexity of our optimization problem 
and relieve identifiability issues, the PKN can undergo 
pathway compression to remove all the un-measured and 
un-perturbed species without impairing the logical 
consistency of the network. In addition, all possible logic 
AND gates between pairs of interactors (incoming to each 
node in the PKN) (Saez-Rodriguez et al. 2009; Terfve et al. 
2012). 

2.2  OmniPath – Integrating pathway resources 

While assembling a PKN, users can rely on many available 
resources, typically databases of signalling pathways. 
However, these databases are maintained by different 
groups and information can be curated differently. This can 
lead to inconsistency in the direction and sign of an 
interaction across various resources thus making it unclear 
for the user which one to use. We use OmniPath (Türei et 
al. 2016) to identify potential missing links. OmniPath 
integrates 55 publicly available resources, and it includes 
information about how many times a specific interaction 
has been reported in the literature. The number of evidence 
from literature about a specific interaction can be used as 
prior information about how we would penalize these 
interactions. 
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2.3  Integration of CellNOpt to add missing links –   
CNORFeeder 

CNORFeeder (Eduati et al. 2012) can be used to propose 
potential missing interactions in the prior knowledge in 
order to obtain new models with a better fit to the data. 
However, the method is limited in its application to the 
simple Boolean formalism. Hence, it cannot capture links, 
which may describe quantitative differences in the dynamic 
behavior of the system. 

2.4  Dynamic-Feeder 

In order to extend the CNORFeeder application to time-
series data, we have developed the Dynamic-Feeder 
method. The way the problem is approached is similar to 
CNORFeeder, as described in the previous section. The 
new Dynamic-Feeder pipeline (Figure 1) is described next. 

2.4.1  Estimation of initial set of parameters 

The first step of the Dynamic-Feeder pipeline consists of 
performing a simple dynamic analysis of the initial PKN 
with CNORode. We first fit a PKN to observed data and 
obtain the set of continuous model parameters, which best 
fits the observations. From here on we refer to these tuned 
parameters as the initial set of optimal parameters. 

2.4.2  Identifying poor fits 

In each experimental condition, we are stimulating or 
inhibiting the activity of specific nodes in the PKN while 
observing their effects on the measured nodes. After the 
initial analysis, we identify a list of measurements, which 
are poorly fitted across each of the experimental conditions. 
We use the mean squared error (MSE) as a metric to 
identify the bad fits. For each measurement across each 
experimental condition, we can compute MSE across all 
time points in order to get an insight into the quality of fit 
for each measurement. In this case, an MSE threshold value 
can be set in order to define when a measurement has not 
been fitted well. A measurement is considered to be poorly 
fitted when it’s MSE value is higher than the specified 
threshold (see Section 3.2). 

2.4.3  Integration with PKN 

Poorly fitted nodes indicate missing interactions from the 
PKN. After identifying the measurements that are poorly 
fitted, we can then use various resources to identify a set of 
possible signed links connecting with the shortest paths the 
measured nodes and the proteins, which have been 
perturbed on that specific experimental condition. We 
particularly make use of OmniPath because of the reasons 
as described in section 2.2. We can constrain the search 
with a maximal path length parameter set by the user. Also, 
we can control the sparsity of the integrated network by the 
threshold parameters (over the MSE values) of what we 
want to consider as a poorly fitted measurement. The higher 
the threshold parameter we use, the sparser the network. 
From the list of all the shortest paths identified, we then 

only retain those ones which have a higher overlap with the 
original PKN (common interactions). On the way we 
identify and integrate potential missing links, lies also the 
difference of Dynamic-Feeder to CNORFeeder: in 
CNORFeeder, all possible interactions linking cues (the 
perturbed components of the network) to the regulated 
measurements were integrated while on Dynamic-Feeder 
we are more focused on identifying and adding those links 
which can potentially correct the misfits. This has a 
computational advantage, especially when considering the 
complexity of the dynamic modelling of signalling 
networks. 

 
 

Figure 1.: Dynamic-Feeder pipeline. A) Initial training of the 
PKN to data. B) Identifying poorly fitted measurements. C) 
Identifying possible missing links from interaction resources 

(activation of NFkB by PI3K through Akt). D) Integrating missing 
links to PKN and running final training to data results to better 

fits. 

2.4.4  Training the integrated PKN 

Once we have identified a set of possible links as described 
in the previous section, we integrate it to the PKN and then 
train the new model. In this case, similar to CNORFeeder, 
we penalize the addition of the new links to the system by 
introducing another penalty factor to the objective function 
for each parameter associated with the new nodes and links. 
The integrated network is then trained to the data. The new 
set of parameter values are identified for each link and node 
in the integrated PKN. The higher penalty factor for the 
new members in the PKN will discourage the addition of 
new links, which do not provide a sensible contribution to 
the improvement of the overall fit. 
 

 3. RESULTS 

The Dynamic-Feeder method was applied to a case study 
from the HPN-DREAM Breast Cancer challenge (Hill et al. 
2016). The data was scaled in the range between 0 and 1 
across all the time-points (5min, 15min, 30min, 60min, 
120min, and 240min) with a basal level set to 0.5 in the 
control measurement at time-point 0. An activity value less 
than 0.5 means that the measurement is at a lower activity 
level compared to the basal (0 being the lowest). An 
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activity value of more than 0.5 means that the measurement 
is at a higher activity level compared to the basal (1 being 
the highest). The initial structure of the PKN used to train 
the HPN-DREAM data was generated by combining 
interactions from Reactome (Fabregat et al. 2018) as 
explained in (Razzaq et al. 2018). For computational 
efficiency, the PKN (having originally 120 interactions and 
37 nodes, of which 21 are measured) was further reduced to 
contain only those measurements that map in OmniPath and 
by excluding the non-identifiable nodes through 
compression. The resulting network (Figure 2) contains 58 
interactions connecting 14 measured proteins (of whom 2 
are also inhibited), 6 are stimulated while 4 are not 
measured. 

 
 
Figure 2: Initial PKN. Stimulated species are represented as green 
nodes, red nodes are inhibited, blue nodes are measured and white 
nodes are un-measured and un-perturbed. Black edges represent 

activatory interactions, while red edges represent inhibitory 
interactions. 

3.1  Training of the original PKN 

As described in the pipeline, we start by first training the 
network to data. Even considering the small size of the 
model, we allow training for 2 hours to ensure that the 
initial solution we obtain has reached the best possible fit 
(Figure 3). We fix the parameters n=3 while only 
optimizing the other two parameters k and τ  for each edge 
and node in the PKN. For each of them, we apply an L1 
regularization penalty factor λk = 0.01 and λτ = 0.1  
respectively, to induce sparsity in the model. These specific 
values of λ  correspond to the best accuracy in estimating 
the parameters as according to a small in-silico case-study 
explained in (Eduati et al. 2017). The initial training 
provided a fitting score with a sum of squared residuals 
RSS=24.36282. In order to better visualize the importance 
of the inferred parameter values, we map the estimated 
values of k and τ  to their corresponding network 
components as in (Figure 4).  

 
 

Figure 3: Solution obtained by training PKN to data. In blue 
dashed lines we have the simulations. In solid black lines, the 

measured data is shown across each time-point. In the columns, 
we label the measurements, while in the rows we label the 
experimental condition where we perturb none, one or a 

combination of cues. 
 

 
 

Figure 4: Mapping the initial parameter set as network features. 
Thicker edges correspond to higher values of k (meaning stronger 
interactions) while the bigger the size of each node; the higher the 

corresponding inferred parameter   (meaning higher 
responsiveness). 

3.2  Training of the integrated network 

By comparing the simulations to data for the specific set of 
initial parameters that we have obtained, we are able to 
identify measurements that were poorly fitted. Based on 
that we can then identify the list of interactions we can 
integrate to the PKN. We have screened through all the 
combination of different parameters: Fitting error or RMSE 
threshold (the worst 5%, 10% and 20% measurement fits at 
each condition); Maximal length of paths to search on the 
database connecting the perturbed cues to the poorly fitted 
measurements (maximal path length of 2, 3, 4 and no path 
length limit were screened); The multiplier penalty factor 
over the new links ( λk  multiplied by a factor of 5, 10, 50 
and 100 for each newly integrated link). 48 different 
integrated models were then generated and optimized by 
applying the different parameters mentioned above. The 
optimized models were then evaluated to identify the best 
one based on the Akaike’s Information Criterion Score 
(AIC) (Akaike 1992). We have computed the Akaike 
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Information Criterion (AIC) scores for each of the models 
as: 

AIC=2P+M*ln(RSS/M) (4) 

P is the number of functional parameters (the inferred k and 
τ  parameters greater than 0); while M is the number of 
observations. According to the Akaike model selection 
criterion, the model with the lower AIC score is considered 
to be the best one and thus selected as the preferred model. 

The Feeder parameters corresponding to the best model in 
terms of AIC scores were: worst 5% of fits, path length 
limit of 4 and penalty factor of 5 times for the new 
integrated links compared to the edges present in the 
original PKN. 

As seen (Figure 5), we obtain a model with a better fit than 
the previous one and with an overall RSS score of 
RSS=23.24489. However, the RSS score alone might not be 
a good indicator for telling if indeed our integrated model is 
better than the original one. For a better estimator of the 
relative quality of each of the models, we again rely on the 
AIC score to tell if the new integrated model is better than 
the original one obtained by training the PKN to data.  AIC 
scores for both of the models yield AICPKN=-5972.012 and 
AICFeed=-6032.017, respectively. Since AICFeed<AICPKN, 
we consider the model we obtain from the integrated 
network as the best one.  We map the new estimated 
parameter values as in (Figure 6). The best Feeder network 
contains 21 new interactions and 4 new species.  

 
Figure 5: Solution obtained by training integrated network to 

data. In the green box, we highlight how the simulations fits better 
the observed dynamic behaviour of RPS6KB1_T389 and 

ERK_T202_Y204 at the experimental conditions in which NRG1 is 
being stimulated. There is also an improvement of RAF1_S338 
measurement across all the experimental condition compared to 

the fit of the original PKN. 

In particular (as highlighted in the green box in Figure 5), 
we observe that the main improvement in the fitting cost 
has resulted by adding the NRG1 to RPS6KB1_T389 and 
ERK_T202_Y204  activatory interactions to the PKN, 
which reflects the activation of the RPS6KB1_T389  
ERK_T202_Y204 in the presence of neuregulin (NRG1). 

 

 
 

Figure 6: Mapping parameter set as network features in the 
integrated network. Dashed edges correspond to the newly 

integrated links. 

 

 4. DISCUSSION 

In this paper, we present an approach that identifies new 
possible interactions coming from signalling pathway 
resources that improve the fit of logic ODE models to the 
data with respect to the original PKN. This method deals 
with the incompleteness of the PKN by identifying and 
integrating new links into the model that help to improve 
the fit to the data. This is achieved by combining 
information from perturbation analysis and other resources 
of protein interactions. We have used OmniPath as a 
comprehensive collection of pathway resources. From 
OmniPath, we then identify the shortest path connecting 
each pair of perturbed network components to poorly fitted 
measurements. Each new link is then weighted with a 
higher penalty factor than the ones from the PKN in order 
to remove the false positives and avoid the over-fits. This 
approach extends previous efforts by allowing for efficient 
identification of missing signalling pathways in a context 
when we do dynamic modelling of the data. 

We have applied the method to a real-case published 
dataset, used in the HPN-DREAM Breast Cancer challenge. 
We were able to identify a possible activatory connection 
between NRG1 and RPS6KB1_T389 and 
ERK_T202_Y204 from this data. Further experimental 
validations would be necessary to confirm this finding. 

Our method has several limitations. One limitation of the 
method is that it needs PPI (protein-protein interaction) 
resources from where to find potential missing pathways to 
integrate into the PKN and we cannot infer any interaction 
which is yet unknown. Future progress in that direction 
would be to integrate the Dynamic-Feeder pipeline with 
some purely data-driven methods of reverse engineering of 
signalling pathways like SELDOM (Henriques et al. 2017). 
Another limitation is that Dynamic-Feeder currently 
searches for the shortest paths in the database that connect 
the cues with the poorly fitted measurements, and then 
selects those with the highest overlap with the initial PKN. 
However, there could be alternative paths between other 
nodes downstream the cues towards the poorly fitted 
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measurements that could improve the fits. This was done in 
the original Feeder (Eduati et al. 2012) and it could be 
implemented in our Dynamic-Feeder pipeline. Addressing 
this issue is also a scope of our future work regarding the 
Dynamic-Feeder pipeline. 
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