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Abstract
Motivation: Alternative RNA splicing plays a crucial role in defining protein function. However, despite its relevance, there is a lack of tools that
characterize effects of splicing on protein interaction networks in a mechanistic manner (i.e. presence or absence of protein–protein interactions
due to RNA splicing). To fill this gap, we present Linear Integer programming for Network reconstruction using transcriptomics and Differential
splicing data Analysis (LINDA) as a method that integrates resources of protein–protein and domain–domain interactions, transcription factor tar-
gets, and differential splicing/transcript analysis to infer splicing-dependent effects on cellular pathways and regulatory networks.

Results: We have applied LINDA to a panel of 54 shRNA depletion experiments in HepG2 and K562 cells from the ENCORE initiative. Through
computational benchmarking, we could show that the integration of splicing effects with LINDA can identify pathway mechanisms contributing
to known bioprocesses better than other state of the art methods, which do not account for splicing. Additionally, we have experimentally vali-
dated some of the predicted splicing effects that the depletion of HNRNPK in K562 cells has on signalling.

1 Introduction

Alternative splicing (AS) contributes to the structural and
functional diversity of proteins and might affect up to 95% of
human gene loci (Wang et al. 2008). AS generates alternative
mRNAs from precursor RNA sequences (pre-mRNA) by join-
ing different combinations of exons. Different modes of AS
exist and Exon Skipping (ES) is the most common among
them (Wang et al. 2017). In ES, exons within the coding
sequences may be skipped yielding alternative protein sequen-
ces upon mRNA translation. As such, AS processes may have
various consequences on protein interactions through the re-
moval or addition of protein interaction domains, thus mak-
ing ES an important factor contributing to the modulation of
signalling pathway activities as well as playing a significant
role in gene expression. Nevertheless, despite their relevance,
AS/ES effects are typically neglected when it comes to the
functional and mechanistic analysis of signalling pathways.

Recent efforts (Louadi et al. 2021b) have led to the devel-
opment of DIGGER as an online platform that provides an
isoform-, domain-, and exon-specific view of protein interac-
tions in humans. This makes DIGGER a suitable resource to
support the development of computational methods that are
used to characterize AS/ES effects on protein interaction net-
works. Following this line, NEASE (Louadi et al. 2021a) was
further developed as a method used for the systematic analysis
of the functional effects of AS. NEASE runs a hypergeometric
test over interactions affected by protein splicing for gene set
overrepresentation analysis (ORA). The value of NEASE was
shown in several applications where it helped in identifying

pathways contributing to tissue identity (muscle and neural
tissues) as well as in highlighting aberrant splicing in diseases.

Despite their proven utility, enrichment-based methods like
NEASE provide only a limited view on the effects of splicing
upstream or downstream to the affected proteins. A more
complete mechanistic understanding of splicing consequences
on pathways and protein interactions would be of value to
computationally predict effects in gene expression, cellular de-
velopment as well as drug response. Two splice-agnostic ways
to reconstruct protein interaction networks from transcrip-
tomics are CausalR (Bradley and Barrett 2017) and
CARNIVAL methods (Melas et al. 2015; Liu et al. 2019).
CausalR was the first open-source causal network analysis
platform used to predict the root cause of observed gene ex-
pression patterns by using causal reasoning principles. This
was achieved through the implementation of an algorithm
that scans for nodes with sign-consistent shortest paths to the
observations. CARNIVAL, on the other hand, is an approach
through which we can infer a subset of functional regulatory
mechanisms upstream of regulated transcription factors (TFs)
from prior knowledge of possible protein interactions.
CARNIVAL typically relies on OmniPath (Türei et al. 2021)
as a source of prior knowledge. However, the interactions
reported in CARNIVAL and CausalR are typically verified
through experiments involving only pairs of major protein
isoforms. Additionally, none of the aforementioned resources
maps individual exons to protein domains, which is essential
for the consequent analysis of RNA splicing. In this way, the
AS effects are largely neglected.

VC The Author(s) 2023. Published by Oxford University Press.

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which

permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

Bioinformatics, 2023, 39, i458–i464
https://doi.org/10.1093/bioinformatics/btad224

ISMB/ECCB 2023

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/39/Supplem
ent_1/i458/7210464 by U

niversität H
eidelberg user on 24 January 2024



To address the above-mentioned limitations, we have devel-
oped Linear Integer programming for Network reconstruc-
tion using transcriptomics and Differential splicing data
Analysis (LINDA) as the first tool for mechanistic characteri-
zation of splicing effects on protein interaction networks.
Similar to CARNIVAL, LINDA aims to infer functional regu-
latory mechanisms upstream of functional TFs (Garcia-
Alonso et al. 2021). However, to account for splicing effects,
LINDA additionally integrates information about differen-
tially spliced events/transcript abundance as well as available
knowledge of domain-centric protein–protein interactions
(PPIs). In summary, LINDA provides potentially useful
insights about how splicing specifically affects cellular signal-
ling in a specific context. We demonstrate the usefulness of
LINDA in highlighting splicing effects in protein interaction
networks as well as in identifying pathways associated with
observed phenotype upon the silencing of target genes in
K562 immortalized myelogenous leukaemia cells in an inde-
pendent study (Replogle et al. 2022). Additionally, in one
case example, we show the usefulness of LINDA in identifying
the underlying regulatory mechanisms explaining how the de-
pletion of the Heterogeneous Nuclear Ribonucleoprotein K
(HNRNPK) protein affects splicing and consequently PPIs,
some of which were experimentally validated.

2 Materials and Methods
2.1. Approach

LINDA integrates information from prior biological knowl-
edge on protein interactions and TF activities with RNA-seq
data to infer contextualized cellular networks. Figure 1
depicts the LINDA workflow. The key components of the
method are as follows: (i) From (differential/sample-wise)
gene expression data, we estimate TF activities by using the
DoRothEA (Garcia-Alonso et al. 2021) resource and the
VIPER enrichment method (Alvarez et al. 2016). This step
defines a set of significantly regulated TFs. LINDA aims to
identify potential upstream mechanisms leading to the regula-
tion of these TFs; (ii) We identify AS/ES events by analysing
RNA-seq data through established computational methods
(Mehmood et al. 2020) and map the respective transcript iso-
forms to their corresponding protein records and Pfam
domains; and (iii) We build up a hypothesis space of possible
interactions using DIGGER, which provides knowledge about

PPI and domain-domain interaction (DDI) in a structured
database.

LINDA will infer functional regulatory mechanisms be-
tween domains/proteins connecting an upstream regulator of
signalling to downstream TFs. By default, LINDA adds to
DIGGER an auxiliary ‘Perturbation’ which is connected with
those genes in the resource which do not have any upstream
regulator. In a typical analysis workflow we start by estimat-
ing TF activities from (differential) gene expression data using
the DoRothEA package (Garcia-Alonso et al. 2021). LINDA
then applies a Causal Reasoning approach to infer a subset of
protein–protein and domain–domain regulatory mechanisms
which are responsible for the regulation of downstream TFs.
LINDA uses the DIGGER resource of PPI and DDI. This
means that the functional interactions inferred by LINDA,
will represent a subset of the interactions present in DIGGER.

Our novel contribution is to integrate information about
splicing events into this approach. For this, we can either rely
on (i) methods used for the identification of differentially
skipped exons; or (ii) methods to pinpoint differential tran-
script abundance. There are numerous methods to identify
differential splicing events like rMATS (Shen et al. 2014) and
MAJIQ (Vaquero-Garcia et al. 2016). For exon-skipping
events, we require size-effect and significance estimates which
hold information about the difference in the inclusion/exclu-
sion levels of a specific exon in the final mRNA transcript be-
tween two samples or conditions we want to compare.
Typically, effect sizes such as dPSI parameter inform us of the
direction of change as well (i.e. exclusion versus inclusion in a
comparison of two conditions). A negative dPSI value indi-
cates an exon exclusion event while a positive dPSI value indi-
cates an exon inclusion event relative to a control condition.
DIGGER provides mapping tables between exons, corre-
sponding protein isoforms and, Pfam domains. Thus, we can
then identify skipped protein domains based on the evidence
from differential ES data. A protein domain will be considered
as skipped if the set of exons to which this protein domain
maps to are also considered to be skipped (Supplementary
Fig. S1). Skipped exons in this case are considered those
whose P-value falls below a user-defined threshold. DIGGER
also provides mapping tables between transcript identifiers
and corresponding protein Pfam domains, which enables dif-
ferential transcript abundance analysis with the aim to iden-
tify skipped protein domains. In this case, however, the size
effect represents the log-fold-change (logFC) value in the tran-
script abundance difference between the two conditions that
we are comparing. Similar to dPSI, the sign of the logFC value
will tell for the direction of change and the logFC values are
associated with a P-value obtained from applying various sig-
nificance tests. We can rely on methods such as edgeR
(Robinson et al. 2010) to estimate differentially expressed
transcripts between two conditions from RNA-Seq transcript
abundance data. In the case, when we have multiple exons/
transcripts mapping into a single specific domain of a protein,
the P-value, which indicates how confident we are about
whether this domain is to be considered as skipped is deter-
mined by performing a Fisher’s aggregation procedure
(Lancaster 1961) over all the P-values of the corresponding
exons and transcripts. The size effect scores assigned to the
protein domains are then simply calculated as the average
among the size effect scores (dPSI/logFC) of the matching
exons/transcripts.

Figure 1. LINDA workflow. Prior knowledge of PPI and DDI networks is

combined with TF activity scores and differential ES events/transcript

abundances in order to infer functional interaction mechanisms. LINDA

integrates all the three above-mentioned methodologies in order to infer

regulatory interactions from functional domains (solid arrows) and

abrogate interactions from skipped domains (dashed lines).
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LINDA then uses a deterministic global optimization ap-
proach which aims to identify the subset of functional ele-
ments (proteins, domains, or interactions between them) from
the knowledge available in DIGGER. Each of these elements
has been assigned a discrete logic variable (0 or 1), which rep-
resents the state that these elements can take. Such a discrete
representation of the state variables allows the formulation of
the network-building process of LINDA as an Integer Linear
Problem (ILP), which is defined by a linear objective function
as well as a set of linear constraints. In LINDA, the objective
function aims to prioritize networks, which include TFs that
are estimated to be most significantly active, while penalizing
the inclusion of those TFs that are not considered to be regu-
lated. A second term of the objective function penalizes the
size of the solution (regularization) to reduce the number of
domain/protein elements to be included in the solution. The
set of linear constraints on the other hand defines the func-
tional relationships among the discrete variables. We use con-
straints to define the rules by which domain and protein
components are allowed to interact with each other. The con-
straints also define the rules of possible functional interactions
based on evidence from splicing events or the identified
skipped domains. Such rules can e.g. enforce that a specific
DDI would be considered to be non-functional if at least one
of the domains in the interacting pairs is skipped. On the
other hand, an interaction between two proteins would only
be possible if at least one of its constituent DDIs is inferred to
be functional.

There are two modes in which the users can run the
LINDA-splice-aware analysis: the hard-constrained and the
soft-constrained modes. In the first approach, skipped exons
are considered those whose P-value falls below a threshold
specified by the user. In this way, hard constraints are set to
the ILP formulation of LINDA in order to ensure that interac-
tions involving skipped domains (mapped to the skipped
exons/transcripts) are considered as non-functional. On the
soft-constrained approach, on the other hand, no hard con-
straints are set to the ILP formulation but instead, exon/do-
main skipping significance scores are added as another
penalization term in the objective function. In this case, the
level of the penalization will depend on the level of the signifi-
cance of the ES event (proportional to -log(P-value)).
Mathematical details about the ILP formulation for LINDA
for both modes of analysis can be found in the Supplementary
materials (Supplementary Text S1).

2.2 Tools and Resources
2.2.1 LINDA

The network reconstruction approach relies on an ILP-based
optimization technique. For more details, please refer to
Supplementary Text S1.

2.2.2 DoRothEA

DoRothEA is a resource of TF to gene target relations with
various levels of confidence (A, B, C, D, and E) from which
we can estimate the highly regulated TFs based on the expres-
sion of their target genes. The TF regulation levels are inferred
via VIPER (Alvarez et al. 2016). In our analysis, we also per-
formed statistical testing to estimate the significance of the en-
richment scores through a permutation analysis. This was
achieved by randomizing the bi-partite TF-to-Gene graph
from DoRothEA 1000 times (Milo et al. 2003; Iorio et al.
2016). The significant P-value is then estimated by looking at

how extreme the originally estimated TF activity is to the null
distribution of scores we generate. Significantly regulated TFs
are considered to be those that pass the significance threshold
P-value� 0.05 from our permutation analysis.

2.2.3 DIGGER

The DDIs and PPIs were combined with the tables mapping
the transcripts and exons to the corresponding Pfam domains
and genes that DIGGER provides. In this way, we have
obtained a single comprehensive table that provides informa-
tion about the interacting domain (with Pfam identifiers) and
protein (with conventional gene names) components as well
as about the Transcript and Exon Ensembl identifiers into
which these domains are mapping. In total, we get a table of
88 732 unique interactions for humans which can also be au-
tomatically loaded from the LINDA package.

2.2.4 ENCORE

ENCORE is a sub-project of ENCODE (https://www.encode
project.org/encore-matrix) whose goal consists of identifying
protein–RNA interactions by creating a map of RNA binding
proteins (RBPs) encoded in the human genome and identify-
ing the RNA elements that the RBPs bind to. It consists of a
large resource of >20 000 experiments, including shRNA KD
of over 200 genes and RNA-seq experiments.

2.2.5 CARNIVAL

CARNIVAL (Liu et al. 2019) is a method used to contextual-
ize signed and directed protein interaction networks from TF
activities based on causal reasoning principles.

2.2.6 CausalR

CausalR represents another causal reasoning network contex-
tualization tool. For our benchmarking studies, path lengths
from one to five edges were scanned and the potentially dysre-
gulated nodes were identified as those which constantly score
among the top 100 based on the number of explained
observations.

2.2.7 HepG2 cell culture and siRNA-mediated reduction of
HNRNPK

HepG2 cells (German Collection of Microorganisms and Cell
Cultures GmbH, ACC 180) were cultured in DMEM þ 10%
FCS þ 1� penicillin/streptomycin at 37�C and 5% CO2.
Cells were transfected with RNAiMAX and siRNAs directed
against HNRNPK (Naarmann et al. 2008) or a non-targeting
control siRNA (Thermo Fisher Scientific) according to the
manufacturer’s protocol and harvested 48-h post-
transfection. Cytoplasmic and nuclear extracts were prepared
according to the method published by Dignam et al. (1983).
Extracts were stored at �80�C until further usage. Protein
concentration was determined by Bradford measurement
(RotiNanoquant, Carl Roth).

2.2.8 RNA isolation and RT-qPCR

RNA was isolated with Trizol (Thermo Fisher Scientific)
according to the manufacturer’s protocol and reverse tran-
scribed with random primers using the Maxima First strand
cDNA synthesis kit (Thermo Fisher Scientific). The HNRNPK
mRNA level was determined by RT-qPCR as described
(Naarmann-de Vries et al. 2019).
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2.2.9 Polyacrylamide gel electrophoresis and Western blotting

Proteins were separated on 4–12% Criterion XT Bis–Tris gels
(Bio-Rad) using XT-MES (Bio-Rad) as running buffer. They
were blotted onto a PVDF membrane (Millipore) in 1� Tris-
glycine buffer (Bio-Rad) þ 10% ethanol. Antibodies were in-
cubated according to Supplementary Table S3. Western blot
signals were detected after incubation with horseradish
peroxidase-coupled secondary antibodies using SuperSignal
West Pico and Atto chemiluminescent substrates (Thermo
Fisher Scientific) and a ChemiDoc system (Bio-Rad). Images
were quantified with Image Lab (Bio-Rad) and further proc-
essed with ImageJ.

2.2.10 Immunoprecipitation of MAPK3

Erk1 (MAPK3) was immunoprecipitated as described previ-
ously (Naarmann et al. 2008) from nuclear extracts employ-
ing a specific Erk1 (MAPK3) antibody (Abcam, ab32537),
and Dynabeads Protein A beads (Thermo Fisher Scientific).

3 Results

The ENCORE project (https://www.encodeproject.org/en
core-matrix) provides experimental data targeting RNA-

binding proteins by Small hairpin (shRNA)-mediated gene si-
lencing over the Hepatocellular Carcinoma (HepG2) and
Chronic Myelogenous Leukaemia (K562) cell-line. To this
end, we have obtained the read counts for gene and transcript
abundance values for two biological replicates in two types of
experimental data or conditions: (i) RNA-Seq on HepG2 and
K562 cells transfected with shRNAs directed against target
genes (from hereon referred to as knockdown [KD]); and (ii)
Control shRNA against no target in HepG2/K562 cells fol-
lowed by RNA-seq (here on referred to as Ctrl). Differential
gene and transcript abundances were then estimated for each
individual gene and transcript by comparing KD-versus-Ctrl
conditions for each perturbation target and each cell type sep-
arately by using edgeR (Robinson et al. 2010).

Differential gene expression (DGE) data from the KD-
versus-Ctrl comparisons were used to estimate differential TF
activities with DoRothEA. Significantly regulated TFs were
considered those that pass the significance threshold P-value
0.05 from the implemented permutation analysis (see
Methods section). The network-building process from
LINDA was then used to infer the upstream processes leading
to the regulation of those TFs which are considered to be sig-
nificantly regulated, while penalizing the inclusion of those
TFs which are not significant. Besides DGE’s we additionally
computed differential transcript expression for the KD-
versus-Ctrl comparisons. Since DIGGER provides a list of
transcript identifiers mapped into the domains of each pro-
tein, this allows us to make use of the estimated differential
transcript abundances in order to identify which of the
domains is to be considered as skipped for each protein avail-
able in DIGGER.

3.1 Splicing effects as a consequence of HNRNPK-

KD contribute to interaction rewiring in HepG2 cells

We have applied hard-constrained LINDA in order to evalu-
ate the protein interaction networks upon the KD of 47 genes
in the HepG2 cell line based on the data provided by
ENCORE. In all the cases, the networks were analysed by
taking into account the splice effects made evident from the
differential transcript analysis (splice-aware analysis) as well
as without taking into account such effects (splice-unaware).
The two types of networks were then combined with each
other in order to make a comparison between them as well as
to highlight better the splicing effects in the protein interaction
networks. As a demonstrative example, we focus on
HNRNPK shRNA KD experiments. This well-studied RNA-
binding protein has been demonstrated to regulate the splicing
of a specific set of target genes (Revil et al. 2009; Thompson
et al. 2018; Escobar-Hoyos et al. 2020). From HNRNPK
shRNA KD experiments we try to recapitulate the KD effects
in the rewiring of functional PPIs. In this case application,
LINDA enumerated 100 diverse network solutions in the
splice-unaware analysis and 96 solutions in the splice-aware
(hard-constrained mode) analysis after letting CPLEX run for
2 h and using 20 threads. The diverse solutions were inte-
grated as a single network (separately in splice-aware and
splice-unaware networks) where each DDI was assigned a
weight value between 0 and 1 indicating how often an interac-
tion appears across the diverse networks retrieved. Such inte-
gration allows making a better comparison between the
splice-aware and splice-unaware networks as well as
highlighting better the splicing effects in the protein interac-
tion networks. The resulting combined network contains 116

Figure 2. Set of interactions functional DDI’s inferred exclusively in the

LINDA splice-unaware analysis and not in the splice-aware approach upon

HNRNPK depletion. The small quadratic nodes depict the interacting

domains labelled with the corresponding Gene and Pfam domain ID. The

small blue nodes highlighted with the black borders represent the spliced

domains while with dashed lines are depicted the interactions in which at

least one of the domain partners is spliced. In brackets of the spliced

domain labels are shown transcript ID’s mapped to their corresponding

domains.

Figure 3. HepG2 cells were transfected with siRNAs directed against

hnRNP K or a non-targeting control (ctrl.) siRNA. A) RT-qPCR analysis of

HNRNPK mRNA levels in ctrl. and HNRNPK depleted HepG2 cells

normalized to ACTB mRNA. B) Western blot analysis of MAPK3,

HNRNPK, SREBF2, HNF4A, and GAPDH mRNA levels in cytoplasmic (CX)

and nuclear extracts (NX). The ratio of the two main SREBF2 isoforms in

every sample as well as the level of HNF4A in HNRNPK depleted cells

versus ctrl. cells were quantified. Shown is the mean value from two

independent blots and three exposure times each. C) MAPK3 was

immunoprecipitated from nuclear extracts as indicated (lanes 3–4). The

successful precipitation of MAPK3, as well as a co-precipitation of HNF4A

and HNRNPK, was analysed in Western blots. The amount of co-

precipitated HNF4A in HNRNPK versus ctrl. depleted cells was quantified.
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DDI’s between 81 domains and 57 unique proteins. Of the 81
domains reported in the integrated network, 27 were identi-
fied as skipped after splice-aware analysis.

We noticed an interesting difference in our comparative
analysis of the splice-aware and splice-unaware networks for
the HNRNPK perturbation case. Figure 2, highlights the rele-
vant connections from the ‘Perturbation’ node to the down-
stream SREBF2 and HNF4A TFs. All interactions were
inferred in the splice-unaware solution but not in the splice-
aware network. More specifically, the two TFs appear to be
regulated by MAPK3 (Erk1) kinase, which in turn is affected
by its upstream regulator ID2 as a result of the interactions
between the Helix-loop-helix DNA-binding domain of ID
(PF0010) and the Protein kinase domain (PF00069) of
MAPK3. In turn, MAPK3 appears to regulate the two down-
stream TFs through it’s the interaction of PF00069 MAPK3
domain with the Ligand-binding domain of nuclear hormone
receptor (PF00104) domain of HNF4A and PF00010 domain
of SREBF2 protein. Both of these DDI’s (PF00069 !
PF00104 of MAPK3! HNF4A and PF00069! PF00010 of
MAPK3 ! SREBF2) are interactions that appear to be dis-
rupted when accounting for splicing effects as domains
PF00104 of HNF4A and PF00010 of SREBF2 are revealed to
be skipped as a result of splicing.

In order to validate these predictions, we depleted HNRNPK
from HepG2 employing siRNA transfection (Fig. 3A and B).
While depletion of HNRNPK had no direct effect on the expres-
sion of MAPK3 (Fig. 3B), we interestingly observed an isoform
change for SREBF2 (Fig. 3B). Especially in the cytoplasmic frac-
tion (CX), a shift from the smaller to the larger SREBF2 isoform
was detected (Fig. 3B). Furthermore, the main isoform of
HNF4A is reduced in HNRNPK-depleted cells (Fig. 3B).
Additional isoforms of HNF4A are near the detection limit and
could not be accurately quantified. Next, we immunoprecipi-
tated MAPK3 from nuclear HepG2 extracts (NX), as HNF4A is

mainly localized in this compartment. Importantly, we were able
to detect the predicted interaction of MAPK3 with HNF4A, and
found a reduced interaction upon HNRNPK depletion
(Fig. 3C). The validation of a differential SREBF2 interaction
was unfortunately not possible due to the crossreactivity of the
antibody.

3.2 Computational benchmarking on the K562

ENCORE dataset

In order to evaluate the global relevance of introducing infor-
mation about splicing effects in protein interaction networks,
we have used the pool of LINDA networks generated for the
K562 cells from ENCORE and aimed to do a comparison
with the other state-of-the-art and similar methods, namely
CARNIVAL and CausalR. For such a benchmark, we have
additionally relied on independent large-scale Perturb-seq
experiments using CRISPRi study in which all expressed
genes in K562 chronic myeloid leukaemia cells were targeted
(n¼9876 targets repressed) (Replogle et al. 2022). In this
study, unbiased clustering of similar perturbations within the
dataset was performed where 64 discrete clusters were identi-
fied and their functions were annotated by using CORUM
(Ruepp et al. 2008), STRING (Szklarczyk et al. 2019), and
manual searches. Such clusters and embeddings showed a
clear organization by biological function spanning an array of
processes and which can be assigned to a corresponding gene
ontology (GO) term (Ashburner et al. 2000). Before perform-
ing computational benchmarking, as a first step, we have
identified overlaps between the ENCORE experiments and
the CRISPRi targets of the Perturb-Seq study (Replogle et al.
2022) where a total number of 24 genes were identified as
targets for both of the studies. Then we identified, which on-
tological is associated with each repressed genes in the
Perturb-Seq analyses—From the 24 targets, 16 cases were un-
ambiguously associated with a phenotype, namely:
HNRNPA2B1, HNRNPC, HNRNPU, MAGOH, NCBP2,
PABPN1, PAPOLA, PCBP1, POLR2G, PPIL4, PRPF6,
PRPF8, PUF60, SF1, SRSF1, and SMNDC1. And finally, for
each of the phenotypes associated with the perturbation of
these 16 genes, we identify a corresponding pathway set from
the GO collection of pathways by using the AmiGO web-
service (Carbon et al. 2009). A table of perturbation targets in
K562 clustered to each of their specific phenotypes and their
corresponding GO pathway sets has been made available in
Supplementary Table S2.

In this computational benchmarking approach, for each se-
lected 16 gene perturbation experiments, we have decided to
compare the LINDA splice-aware networks which we infer
when using the soft-constraint mode with networks which we
obtain when using LINDA-splice-unaware, CARNIVAL, and
CausalR. Then for each network (CARNIVAL, CausalR,
LINDA-splice-aware, and LINDA-splice-unaware) we per-
form an ORA of the nodes/proteins/genes inferred over the
GO term sets with the fgsea R-package (Korotkevich et al.
2021). From the ORA analyses, we then estimate the enrich-
ment scores (as -log10 of the P-values) for each GO term
assigned to our genetic perturbation targets. The higher the
enrichment score, the more enriched is the target GO term.
Finally, we have compared the enrichment score distributions
for the CARNIVAL, CausalR, LINDA splice-aware (soft-con-
strained), and unaware networks. Figure 4 shows a compari-
son about how well the splice-aware LINDA networks can
identify signalling mechanisms which are expected to be

Figure 4. Comparing the distribution of enrichment scores: LINDA splice-

aware versus CARNIVAL versus CausalR versus LINDA splice-unaware.

Here are depicted and compared the pathway enrichment score values

(as -log10(P-values)) of biological functions/phenotypes for LINDA (splice-

aware and splice-unaware) and CARNIVAL. The splice-aware LINDA

analyses were performed in the soft-constrained mode: 1. HNRNPA2B1—

Histone acetylation; 2. HNRNPC—NuA4 histone acetyltransferase complex;

3. HNRNPU—Spliceosome; 4. MAGOH—Non-sense Mediated Decay; 5.

NCBP2—mRNA Capping; 6. PABPN1—Exosome and mRNA turnover; 7.

PAPOLA—Mediator Complex; 8. PCBP1—COP9 Signalosome; 9.

POLR2G—Nucleotide Excision Repair; 10. PPIL4—Spliceosome; 11.

PRPF6—Spliceosome; 12. PRPF8—Spliceosome; 13. PUF60—Spliceosome;

14. SF1—NuA4 histone acetyltransferase complex; 15. SMNDC1—

Spliceosome; 16. SRSF1—Mediator Complex.
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enriched for each perturbation experiment compared to
CARNIVAL.

As we can notice, compared to CARNIVAL and CausalR, the
LINDA networks can significantly improve the gene-level en-
richment analysis for those GO terms that match the phenotypic
response of K562 cells on each selected perturbation. Indeed, a
statistical testing analysis (paired Student’s t-test: (i) LINDA
splice-aware versus CARNIVAL—t¼ 1.6485, P-value¼ 0.1187;
(ii) LINDA splice-aware versus CausalR—t¼ 1.9313, P-val-
ue¼ 0.07136 and (iii) LINDA splice-aware versus LINDA
splice-unaware—t¼1.9217, P-value¼ 0.07264 over the enrich-
ment score distribution of target GO terms, showed that integra-
tion of information about splicing through LINDA improves the
enrichment of target phenotypes compared to CARNIVAL,
CausalR as well as the LINDA splice-unaware networks.

4 Discussions

In this article, we have described LINDA as a method that infers
regulated protein interaction networks based on evidence from
gene expression data and AS at the same time. As such, LINDA
uncovers the potential effects of AS on cellular signalling net-
works. Similar to many other network analysis tools (Beisser
et al. 2010; Gjerga et al. 2020, 2021; Llabrés et al. 2020), the
network reconstruction process in LINDA is performed by the
implementation of an Integer Linear Programming (ILP) formu-
lation, which offers some obvious advantages such as the identi-
fication of global optimal solutions through the use of available
efficient solvers. Additionally, the modelling process can be con-
trolled by a wide range of optimization parameters and settings
(see Supplementary Table S1). LINDA implements three types of
solvers (COIN-Cbc, lpSolve, and the default CPLEX) and a
comparison between such solvers has been provided in the
Supplementary material (Supplementary Text S2).

LINDA extends a previous method called CARNIVAL (Liu
et al. 2019). Similar to CARNIVAL, LINDA merges TF activi-
ties estimated from gene expression data with prior knowl-
edge on the signalling network architecture to identify
processes downstream of signalling which are driving changes
in gene expression. However, one of the limitations of
CARNIVAL is that it neglects AS due to the absence of this in-
formation in data analysis and corresponding resources of
protein interactions. LINDA overcomes this limitation by re-
lying on the DIGGER resource, which integrates PPI and
DDI. In this way, LINDA is able to integrate the functional
effects of alternative exon usage (as identified through various
differential splicing tools or from differential transcript abun-
dance analysis) over the structural composition of different
protein isoforms and their ability to interact with other pro-
teins. One disadvantage of LINDA, however, is that it is not
able to identify the direction of the regulation of inferred pro-
teins (up-/down-regulation) as CARNIVAL does. This is due
to the fact that the DIGGER resource provides no information
about the nature of the interaction between pairs of proteins
(activatory/inhibitory interactions) or how splicing is able to
affect signs of interactions. However, LINDA could be easily
extended once RNA splicing resolved information on the di-
rection of interaction becomes available. Currently, LINDA
and CARNIVAL, as well as CausalR, should rather be seen as
complementary to each other as both of these methods can be
used to give answers to different biological questions.

Network reconstruction methods are able to reveal potential
mechanisms of interactions between proteins. Through such a

mechanistic approach, we are not only able to identify associa-
tions between biological molecules, but we can also reveal the
underlying molecular mechanisms involved in such associations.
This makes network inference tools especially useful to pinpoint
potential therapeutic targets and to make predictions about the
potential outcome of a treatment. However, signalling network
reconstruction considering RNA splicing effects on the protein
interactome is underrepresented in literature. We have tried to
fill this gap with LINDA. This work is a start but delivers a
promising hypothesis as exemplified by comparing splice-aware
and splice-unaware networks.
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